Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Math Biol ; 88(3): 32, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38407620

RESUMO

Collective cell migration is a multicellular phenomenon that arises in various biological contexts, including cancer and embryo development. 'Collectiveness' can be promoted by cell-cell interactions such as co-attraction and contact inhibition of locomotion. These mechanisms act on cell polarity, pivotal for directed cell motility, through influencing the intracellular dynamics of small GTPases such as Rac1. To model these dynamics we introduce a biased random walk model, where the bias depends on the internal state of Rac1, and the Rac1 state is influenced by cell-cell interactions and chemoattractive cues. In an extensive simulation study we demonstrate and explain the scope and applicability of the introduced model in various scenarios. The use of a biased random walk model allows for the derivation of a corresponding partial differential equation for the cell density while still maintaining a certain level of intracellular detail from the individual based setting.


Assuntos
Quimiotaxia , Crista Neural , Locomoção , Movimento Celular , Comunicação Celular
2.
PLoS Comput Biol ; 19(3): e1010916, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36881572

RESUMO

When exposed to increased mechanical resistance from the soil, plant roots display non-linear growth responses that cannot be solely explained by mechanical principles. Here, we aim to investigate how changes in tissue mechanical properties are biologically regulated in response to soil strength. A particle-based model was developed to solve root-soil mechanical interactions at the cellular scale, and a detailed numerical study explored factors that affect root responses to soil resistance. Results showed how softening of root tissues at the tip may contribute to root responses to soil impedance, a mechanism likely linked to soil cavity expansion. The model also predicted the shortening and decreased anisotropy of the zone where growth occurs, which may improve the mechanical stability of the root against axial forces. The study demonstrates the potential of advanced modeling tools to help identify traits that confer plant resistance to abiotic stress.


Assuntos
Raízes de Plantas , Solo , Gravitação , Anisotropia
3.
Philos Trans A Math Phys Eng Sci ; 379(2213): 20200270, 2021 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-34743605

RESUMO

Periodic patterns form intricate arrays in the vertebrate anatomy, notably the hair and feather follicles of the skin, but also internally the villi of the gut and the many branches of the lung, kidney, mammary and salivary glands. These tissues are composite structures, being composed of adjoined epithelium and mesenchyme, and the patterns that arise within them require interaction between these two tissue layers. In embryonic development, cells change both their distribution and state in a periodic manner, defining the size and relative positions of these specialized structures. Their placement is determined by simple spacing mechanisms, with substantial evidence pointing to a variety of local enhancement/lateral inhibition systems underlying the breaking of symmetry. The nature of the cellular processes involved, however, has been less clear. While much attention has focused on intercellular soluble signals, such as protein growth factors, experimental evidence has grown for contributions of cell movement or mechanical forces to symmetry breaking. In the mesenchyme, unlike the epithelium, cells may move freely and can self-organize into aggregates by chemotaxis, or through generation and response to mechanical strain on their surrounding matrix. Different modes of self-organization may coexist, either coordinated into a single system or with hierarchical relationships. Consideration of a broad range of distinct biological processes is required to advance understanding of biological pattern formation. This article is part of the theme issue 'Recent progress and open frontiers in Turing's theory of morphogenesis'.


Assuntos
Modelos Biológicos , Pele , Animais , Morfogênese , Vertebrados
4.
Bull Math Biol ; 82(2): 17, 2020 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-31970524

RESUMO

Plant hormone auxin has critical roles in plant growth, dependent on its heterogeneous distribution in plant tissues. Exactly how auxin transport and developmental processes such as growth coordinate to achieve the precise patterns of auxin observed experimentally is not well understood. Here we use mathematical modelling to examine the interplay between auxin dynamics and growth and their contribution to formation of patterns in auxin distribution in plant tissues. Mathematical models describing the auxin-related signalling pathway, PIN and AUX1 dynamics, auxin transport, and cell growth in plant tissues are derived. A key assumption of our models is the regulation of PIN proteins by the auxin-responsive ARF-Aux/IAA signalling pathway, with upregulation of PIN biosynthesis by ARFs. Models are analysed and solved numerically to examine the long-time behaviour and auxin distribution. Changes in auxin-related signalling processes are shown to be able to trigger transition between passage- and spot-type patterns in auxin distribution. The model was also shown to be able to generate isolated cells with oscillatory dynamics in levels of components of the auxin signalling pathway which could explain oscillations in levels of ARF targets that have been observed experimentally. Cell growth was shown to have influence on PIN polarisation and determination of auxin distribution patterns. Numerical simulation results indicate that auxin-related signalling processes can explain the different patterns in auxin distributions observed in plant tissues, whereas the interplay between auxin transport and growth can explain the 'reverse-fountain' pattern in auxin distribution observed at plant root tips.


Assuntos
Ácidos Indolacéticos/metabolismo , Modelos Biológicos , Reguladores de Crescimento de Plantas/metabolismo , Plantas/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Transporte Biológico Ativo , Simulação por Computador , Conceitos Matemáticos , Proteínas de Membrana Transportadoras/metabolismo , Dinâmica não Linear , Desenvolvimento Vegetal , Proteínas de Plantas/metabolismo , Transdução de Sinais
5.
J Theor Biol ; 432: 109-131, 2017 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-28818467

RESUMO

The plant hormones brassinosteroid (BR) and gibberellin (GA) have important roles in a wide range of processes involved in plant growth and development. In this paper we derive and analyse new mathematical models for the BR signalling pathway and for the crosstalk between the BR and GA signalling pathways. To analyse the effects of spatial heterogeneity of the signalling processes, along with spatially-homogeneous ODE models we derive coupled PDE-ODE systems modelling the temporal and spatial dynamics of molecules involved in the signalling pathways. The values of the parameters in the model for the BR signalling pathway are determined using experimental data on the gene expression of BR biosynthetic enzymes. The stability of steady state solutions of our mathematical model, shown for a wide range of parameters, can be related to the BR homeostasis which is essential for proper function of plant cells. Solutions of the mathematical model for the BR signalling pathway can exhibit oscillatory behaviour only for relatively large values of parameters associated with transcription factor brassinazole-resistant1's (BZR) phosphorylation state, suggesting that this process may be important in governing the stability of signalling processes. Comparison between ODE and PDE-ODE models demonstrates distinct spatial distribution in the level of BR in the cell cytoplasm, however the spatial heterogeneity has significant effect on the dynamics of the averaged solutions only in the case when we have oscillations in solutions for at least one of the models, i.e. for possibly biologically not relevant parameter values. Our results for the crosstalk model suggest that the interaction between transcription factors BZR and DELLA exerts more influence on the dynamics of the signalling pathways than BZR-mediated biosynthesis of GA, suggesting that the interaction between transcription factors may constitute the principal mechanism of the crosstalk between the BR and GA signalling pathways. In general, perturbations in the GA signalling pathway have larger effects on the dynamics of components of the BR signalling pathway than perturbations in the BR signalling pathway on the dynamics of the GA pathway. The perturbation in the crosstalk mechanism also has a larger effect on the dynamics of the BR pathway than of the GA pathway. Large changes in the dynamics of the GA signalling processes can be observed only in the case where there are disturbances in both the BR signalling pathway and the crosstalk mechanism. Those results highlight the robustness of the GA signalling pathway.


Assuntos
Brassinosteroides/metabolismo , Giberelinas/metabolismo , Modelos Biológicos , Transdução de Sinais , Simulação por Computador , Regulação da Expressão Gênica de Plantas , Análise Numérica Assistida por Computador , Reguladores de Crescimento de Plantas/metabolismo
6.
Bull Math Biol ; 78(11): 2135-2164, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27761699

RESUMO

The microscopic structure and anisotropy of plant cell walls greatly influence the mechanical properties, morphogenesis, and growth of plant cells and tissues. The microscopic structure and properties of cell walls are determined by the orientation and mechanical properties of the cellulose microfibrils and the mechanical properties of the cell wall matrix. Viewing the shape of a plant cell as a square prism with the axis aligning with the primary direction of expansion and growth, the orientation of the microfibrils within the side walls, i.e. the parts of the cell walls on the sides of the cells, is known. However, not much is known about their orientation at the upper and lower ends of the cell. Here we investigate the impact of the orientation of cellulose microfibrils within the upper and lower parts of the plant cell walls by solving the equations of linear elasticity numerically. Three different scenarios for the orientation of the microfibrils are considered. We also distinguish between the microstructure in the side walls given by microfibrils perpendicular to the main direction of the expansion and the situation where the microfibrils are rotated through the wall thickness. The macroscopic elastic properties of the cell wall are obtained using homogenization theory from the microscopic description of the elastic properties of the cell wall microfibrils and wall matrix. It is found that the orientation of the microfibrils in the upper and lower parts of the cell walls affects the expansion of the cell in the lateral directions and is particularly important in the case of forces acting on plant cell walls and tissues.


Assuntos
Modelos Biológicos , Células Vegetais/metabolismo , Anisotropia , Fenômenos Biomecânicos , Parede Celular/metabolismo , Celulose/metabolismo , Simulação por Computador , Elasticidade , Conceitos Matemáticos , Microfibrilas/metabolismo
7.
J Exp Bot ; 67(4): 1045-58, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26880747

RESUMO

Major research efforts are targeting the improved performance of root systems for more efficient use of water and nutrients by crops. However, characterizing root system architecture (RSA) is challenging, because roots are difficult objects to observe and analyse. A model-based analysis of RSA traits from phenotyping image data is presented. The model can successfully back-calculate growth parameters without the need to measure individual roots. The mathematical model uses partial differential equations to describe root system development. Methods based on kernel estimators were used to quantify root density distributions from experimental image data, and different optimization approaches to parameterize the model were tested. The model was tested on root images of a set of 89 Brassica rapa L. individuals of the same genotype grown for 14 d after sowing on blue filter paper. Optimized root growth parameters enabled the final (modelled) length of the main root axes to be matched within 1% of their mean values observed in experiments. Parameterized values for elongation rates were within ±4% of the values measured directly on images. Future work should investigate the time dependency of growth parameters using time-lapse image data. The approach is a potentially powerful quantitative technique for identifying crop genotypes with more efficient root systems, using (even incomplete) data from high-throughput phenotyping systems.


Assuntos
Brassica rapa/crescimento & desenvolvimento , Modelos Biológicos , Raízes de Plantas/crescimento & desenvolvimento , Brassica rapa/genética , Processamento de Imagem Assistida por Computador , Fenótipo , Raízes de Plantas/genética
8.
J Math Biol ; 71(4): 795-816, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25312412

RESUMO

Regulation of zinc uptake in roots of Arabidopsis thaliana has recently been modeled by a system of ordinary differential equations based on the uptake of zinc, expression of a transporter protein and the interaction between an activator and inhibitor. For certain parameter choices the steady state of this model becomes unstable upon variation in the external zinc concentration. Numerical results show periodic orbits emerging between two critical values of the external zinc concentration. Here we show the existence of a global Hopf bifurcation with a continuous family of stable periodic orbits between two Hopf bifurcation points. The stability of the orbits in a neighborhood of the bifurcation points is analyzed by deriving the normal form, while the stability of the orbits in the global continuation is shown by calculation of the Floquet multipliers. From a biological point of view, stable periodic orbits lead to potentially toxic zinc peaks in plant cells. Buffering is believed to be an efficient way to deal with strong transient variations in zinc supply. We extend the model by a buffer reaction and analyze the stability of the steady state in dependence of the properties of this reaction. We find that a large enough equilibrium constant of the buffering reaction stabilizes the steady state and prevents the development of oscillations. Hence, our results suggest that buffering has a key role in the dynamics of zinc homeostasis in plant cells.


Assuntos
Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição/metabolismo , Zinco/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/metabolismo , Transporte Biológico Ativo , Proteínas de Transporte/metabolismo , Conceitos Matemáticos , Modelos Biológicos , Zinco/toxicidade
9.
Plant Cell Environ ; 34(12): 2038-46, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21777252

RESUMO

Rice (Oryza sativa L.) secretes far smaller amounts of metal-complexing phytosiderophores (PS) than other grasses. But there is increasing evidence that it relies on PS secretion for its zinc (Zn) uptake. After nitrogen, Zn deficiency is the most common nutrient disorder in rice, affecting up to 50% of lowland rice soils globally. We developed a mathematical model of PS secretion from roots and resulting solubilization and uptake of Zn, allowing for root growth, diurnal variation in secretion, decomposition of the PS in the soil, and the transport and interaction of the PS and Zn in the soil. A sensitivity analysis showed that with realistic parameter values for rice in submerged soil, the typically observed rates of PS secretion from rice are sufficient and necessary to explain observed rates of Zn uptake. There is little effect of diurnal variation in secretion on cumulative Zn uptake, irrespective of other model parameter values, indicating that the observed diurnal variation is not causally related to Zn uptake efficiency. Rooting density has a large effect on uptake per unit PS secretion as a result of overlap of the zones of influence of neighbouring roots. The effects of other complications in the rice rhizosphere are discussed.


Assuntos
Oryza/metabolismo , Raízes de Plantas/metabolismo , Sideróforos/metabolismo , Zinco/metabolismo , Modelos Biológicos , Raízes de Plantas/crescimento & desenvolvimento , Solo/análise
10.
J Theor Biol ; 254(1): 99-109, 2008 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-18561955

RESUMO

Hairy roots are plants genetically transformed by Agrobacterium rhizogenes, which do not produce shoots and are composed mainly by roots. Hairy roots of Ophiorrhiza mungos Linn. are currently gaining interest of pharmacologists, since a secondary product of their metabolism, camptothecin, is used in chemotherapy. To optimize the production of valuable secondary metabolites it is necessary to understand the metabolism and growth of these roots systems. In this work, a mathematical model for description of apical growth of a dense root network (e.g. hairy roots) is derived. A continuous approach is used to define densities of root tips and root volume. Equations are posed to describe the evolution of these and are coupled to the distribution of nutrient concentration in the medium and inside the network. Following the principles of irreversible thermodynamics, growth velocity is defined as the sum over three different driving forces: nutrient concentration gradients, space gradients and root tip diffusion. A finite volume scheme was used for the simulation and parameters were chosen to fit experimental data from O. mungos Linn. hairy roots. Internal nutrient concentration determines short-term growth. Long-term behavior is limited by the total nutrient amount in the medium. Therefore, mass yield could be increased by guaranteeing a constant supply of nutrients. Increasing the initial mass of inoculation did not result in higher mass yields, since nutrient consumption due to metabolism also rose. Four different growth strategies are compared and their properties discussed. This allowed to understand which strategy might be the best to increase mass production optimally. The model is able to describe very well the temporal evolution of mass increase and nutrient uptake. Our results provide further understanding of growth and density distribution of hairy root network and therefore it is a sound base for future applications to describe, e.g., secondary metabolite production.


Assuntos
Camptotheca/crescimento & desenvolvimento , Simulação por Computador , Raízes de Plantas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Camptotheca/genética , Camptotheca/microbiologia , Meristema/crescimento & desenvolvimento , Modelos Biológicos , Raízes de Plantas/microbiologia , Plantas Geneticamente Modificadas/microbiologia , Rhizobium/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...